

SUPERBEEST is on online geospatial tool being developed to assist in decision making by various stakeholders regarding the adoption of perennial bioenergy crops on current row crop land (corn, soybean, pasture) in the U.S. Midwest

Goals

Provide farmers the opportunity to be valued stakeholders in the Bioeconomy and leverage marginal land to produce biomass & ecosystem services (ES)

Help decarbonize community energy requirements

Intended Users: **EVERYBODY** (farmers, landowners, researchers, watershed managers, water quality regulators, biorefinery planners, etc.)

Landing Page

Launch the tool

superbeest.evs.anl.gov/tool

The Tutorial

Launch the tool

superbeest.evs.anl.gov/tool

Step 1: Find Your Area of Interest

Step 2: Identify Marginal Land & Areas Suitable for Saturated Bioenergy Buffers

Economic and environmental land marginalities can be displayed for the row crop and pasture lands in your area of interest by checking the boxes. One or multiple marginalities can be displayed at a time.

Marginal Lands

Layers

NCCPI
Drainage Class
Flooding Frequency
Ponding Frequency
Runoff
Nitrate Leaching
Pesticide Leaching

SSURGO = Soil Survey Geographic Database (USDA-NRCS)

NCCPI : national commodity crop productivity index (economics) - average and fair classified as marginal

Drainage Class: SSURGO drainage classes - somewhat poor, poorly drained, and very poorly drained classified as marginal

Flooding Frequency : SSURGO Flooding frequency classes - occasional common, frequent, and very frequent classified as marginal

Runoff : SSURGO surface runoff classes - high and very high classified as marginal

Nitrate Leaching : USGS data – classified as marginal if a significantly thick surficial aquifer or carbonate (karst) bedrock is close to the surface

Pesticide Leaching : a subset of the nitrate leaching layer where SSURGO data also indicates 3% organic matter content in the soil

Check the <u>Saturated Bioenergy Buffers</u> to identify suitable areas to place saturated bioenergy buffers in tile-drained agricultural lands

Saturated Bioenergy Buffers

Saturated Bioenergy Buffers: For tile-drained land. Suitability is limited to placement along ditch or stream channels. Based on soil drainage, topography, soil organic matter content, soil erodibility factor, and hydraulically restricting layers

Step 2: Identify Marginal Land & Areas Suitable for Saturated Bioenergy Buffers

Use **Composite** to identify areas where multiple marginalities overlap. These areas might be the most problematic for production of traditional row crops or pasture and may be preferred areas to covert to

perennial bioenergy crops.

There are **two options** that can be used to display this information

Heatmap:

Allows users to weigh the marginalities based on their goals and

These composite layers are based upon the 7 marginalities only, excluding saturated bioenergy buffer layers

Cumulative:

Shows areas where the marginalities overlap with color coding based upon the number of marginalities present from 1 to 7

Lighter colored areas (circled) show where multiple marginalities are present and are optimal for conversion to perennial bioenergy crops to achieve multiple environmental benefits

preferences Composite Add % Cumulative 1 contributions to Most 🔾 Heatmap 🛛 Least LAYER % CONTRIBUTION each marginality NCCPI 30 from 1 to 100 %, Drainage Class 20 then hit Update to 0 Flooding Frequency generate the map 20 Ponding Frequency 20 Runoff The higher the Nitrate Leaching 5 percent, the higher that marginality Pesticide Leaching 5 Sum 100 will be weighted Update

In this example we weighted NCCPI the highest at 30%, followed by drainage, ponding, and runoff at 20% each, with less interest in nitrate and pesticide leaching (5%). The lighter areas fit the preferences best and are optimal for conversion to perennial bioenergy crops

Step 4: Printable Report

When you select "View Report" a new window will open which will generate a report with the same marginal lands table presented previously as well as maps of the AOI, marginalities, and suitable areas for saturated bioenergy buffers.

Feedback

Analysis Report

Provide Feedback

We'd love to hear about your experience using the tool

Thank you for taking the time to use SUPERBEEST!

We are always continuing to update this tool's capabilities and refine the user's experience.

If there are any changes or suggestions that you'd like to see to improve the tool's value to you or improve its ease of use, please use the link at the top of the analysis report page to provide feedback.

SUPERBEEST Refinement: Questionnaire for Anonymous Users

The Scaling Up PERennial Bioenergy Economics & Ecosystem Services Tool (SUPERBEEST) is an online geospatial decision-making tool developed by Argonne National Laboratory. This tool can assist in decision making by various stakeholders regarding the adoption of perennial crops on current row crop land in the U.S. Midwest. The goals of SUPERBEEST are to:

- Provide farmers the opportunity to be valued stakeholders in the bioeconomy and leverage marginal land to produce biomass and ecosystem services (ES).
- Create resilient rural communities by offering diversification opportunities for entrepreneurships, jobs, & a clean environment.
- Help decarbonize community energy requirements.

Please complete the questionnaire below and provide feedback on how SUPERBEEST can be refined to improve user accessibility and functionality.

Contact Us

Need Assistance with SUPERBEEST or interested in a specific analysis for your area of interest?

Contact us at: bioenergy@anl.gov or Brad Kasberg at bkasberg@anl.gov

Want to learn more about our research on bioenergy crops and ecosystem services?

Visit our website : web.evs.anl.gov/bioenergy

ACKNOWLEDGEMENTS

The research was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (BETO), under Award No. DE-EE0022598. Argonne National Laboratory is managed by UChicago Argonne, LLC, for the U.S. DOE under contract DE-AC02-06CH11357.

More Info - Defining Marginalities

The following datasets were used to define the marginalities used in SUPERBEEST

- National Commodity Crop Productivity Index (NCCPI)
- Soil Survey Geographic Database (SSURGO)
 - Soil drainage
 - Frequency of water ponding
 - Frequency of flooding
 - Surface runoff

NCCPI & SSURGO Classifications

Sustainability Metric	Classification	Marginality
Crop Productivity Index	Fair; CPI < 100	1
	Average; CPI = 100 - 116	1
	Good; CPI =117 – 132	0
	Excellent; CPI ≥ 133	0
	Very Poorly Drained	1
	Poorly Drained	1
Soil Drainaga	Somewhat Poorly Drained	1
Son Dramage	Moderately Well Drained	0
	Well Drained	0
	No Data	No Data
Frequency of Water	Rare	0
Ponding	Frequent	1
Frequency of Flooding	Rare	0
	Frequent	1
	Negligible	0
	Very Low	0
	Low	0
Surface Runoff	Medium	0
	High	1
	Very High	1
	No data	No Data

0 = not marginal 1 = marginal

For more information: Ssegane, H. and M.C. Negri, 2016, An Integrated Landscape Designed for Commodity and Bioenergy Crops in a Tile-Drained Agricultural Watershed. Journal of Environmental Quality, 45:1588–1596, DOI:10.2134/jeq2015.10.0518.

More Info - Defining Marginalities

The following datasets were used to define the <u>nitrate and pesticide leaching</u> marginalities in SUPERBEEST

• U.S. Geological Survey products: to asses potential for nitrate and pesticide leaching

Past work in Illinois was based on the				
Keefer (1995) method				
Sustainability Metric	Classification	Marginality		
Nitrate Leaching	Very Limited	0		
	Somewhat Limited	0		
	Limited	0		
	Moderate	1		
	High	1		
Pesticide Leaching	Very Limited	0		
	Somewhat Limited	0		
	Limited	0		
	Moderate	1		
	High	1		

Leaching in Illinois

0 = not marginal; 1 = marginal

For more information: Ssegane, H. and M.C. Negri, 2016, An Integrated Landscape Designed for Commodity and Bioenergy Crops in a Tile-Drained Agricultural Watershed. Journal of Environmental Quality, 45:1588–1596, DOI:10.2134/jeq2015.10.0518. Leaching for the U.S. Midwest

Required additional information to map the U.S. Midwest

Data Source	Marginal Classification
USGS mapping of the thickness of	Areas with unconfined aquifers
unconfined (surficial) quaternary	that are more then 4 m thick (for
aquifers in the Midwest	pesticide, organic matter < 3%)
USGS mapping of karst –	Areas with carbonate rock at or
susceptible areas with carbonate	near the surface (for pesticide,
rocks near the land surface	organic matter < 3%)

source: Weary and Doctor 2014

More Info – Defining Saturated Bioenergy Buffers

Saturated Bioenergy Buffers (SBBs) can capture nutrientrich, drainage water from a tile-drained system via a control structure and utilize it for growing bioenergy crops to:

- 1. Improve farm economics
- 2. Protect the environment from nutrient loss

Site Suitability

- Riparian land only with width of 20-30m from the ditch or stream edge
- Requires inputs on soil, topography/slope, landuse/landcover, and drainageway locations
- Analysis is a GIS-based multicriteria decision analysis

For more info: Cacho, J.F, J.J. Quinn, C.R. Zumpf, and M.C. Negri, 2021, Saturated Bioenergy Buffers: Site Suitability Classification and Estimated Areas of Candidate Sites in the U.S. Midwest under Three Scenarios: Argonne Technical Report ANL/EVS-

21/2. https://publications.anl.gov/anlpubs/2021/05/166535.pdf

SBB Site Suitability Classification

Environmental Metric	Classification	Suitability
	Somewhat poorly	1
	drained	
	Poorly drained	1
	Very poorly drained	1
1. Soil drainage	Moderately well drained	0
	Well drained	0
	Somewhat excessively	0
	drained	
	Missing data	Null
	Very flat (≤1% slope)	1
	Flat (>1% to ≤2% slope)	1
	Moderately flat (>2% to	1
2 T	≤3% slope)	
2. Topography	Slightly flat (>3% to	1
	<5% slope)	
	Not flat (≥5% slope)	0
	Missing data	Null
	Corn/soybean	1
3. Land use land cover	Others	0
	Missing data	Null
	Low (<1%)	0
SOC content in the	Medium (1-2%)	1
top 76 cm	High (>2%)	1
	Missing data	Null
5. Depth to	1.2 - 2.5 m	1
hydraulically	Otherwise	0
restricting layer	Missing data	Null
6 Soil orodibility factor	Low (≤0.44)	1
6. Soli erodibility factor (whole soil profile)	High (>0.44)	0
	Missing data	Null

0 = not suitable 1 = suitable

More Info – Biomass Processors

- This table lists the major sources used for defining the locations for biomass processors.
- Biomass processors were separated by type based on data sources.
- Operational status of facilities listed was based on available information on the facility's operational status such as an operating website, news articles, or other resources.

Data Sources			
Name	Website	Last Modified	
IEA Bioenergy Technology Collaboration Programme	https://www.ieabioenergy.com/installations/	2023	
Renewable Fuels Association	https://ethanolrfa.org/resources/ethanol-biorefinery- locations	Not specified	
US DOE Office of Energy Efficiency and Renewable Energy	https://www.energy.gov/eere/bioenergy/integrated- biorefineries	2022	
ArcGIS resource: uploaded by Krista Merry	https://www.arcgis.com/home/item.html?id=4be8ec6968 d34eadb027bfec1ceb947a	2014	
US Biochar Initiative	https://biochar-us.org	2023	
EPA Risk Management Plan (RMP) – The Right-To-Know Network	various	Not specified	
Biomass Magazine	https://biomassmagazine.com/plants/listplants/biomass/U S/page:1/sort:feedstock/direction:desc	2022	
Association of Warm Season Grass Producers	https://www.awsgp.org/	2022	
U.S Energy Information Administration (EIA)	https://www.eia.gov/biofuels/biomass/#dashboard	2023	
National Renewable Energy Laboratories (NREL)	https://maps.nrel.gov/?da=biofuels-atlas	2014	